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Abstract

In this paper we establish a mathematical framework in which we develop measures for determining the contribution of individual featur
to the performance of a classifier. Corresponding to these measures, we design metrics that allow estimation of the importance of feature
a specific multi-layer perceptron neural network. It is shown that all measures constitute lower bounds for the correctness that can be obta
when the feature under study is excluded and the classifier rebuilt. We also present a method for pruning input nodes from the network ¢
that most of the knowledge encoded in its weights is retained. The proposed metrics and the pruning method are validated with a numb
experiments with artificial classification tasks. The experiments indicate that the metric called replaceability results in the tightest er
bounds. Both this metric and the metric called expected influence result in good rankings of the f€i888.Elsevier Science Ltd. All
rights reserved.
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1. Introduction the change in correctness that results from removing or
adding the respective feature from the feature set (Siedlecki
Multi-layer perceptrons (MLPs) have been trained to et al.,, 1988). We define the marginal contribution of a
perform various classification tasks (Cibas et al., 1996; featurek among a set oh features as the difference in
Cunningham et al., 1992; Hansen et al., 1992; Harrison error rate of a classifier based on alleatures and a classi-
et al. (1991); Hart et al., 1989; Hripcsak, 1990; Moallemi, fier based on all but thkth feature.
1991; Poli et al., 1991; Schigler et al., 1992; Schizas et al., Our goal is to estimate the marginal contribution of each
1990; Vogelsang, 1993). An MLP classifier performs a feature used in a trained MLP and to prune the least impor-
mapping from an input (feature or attribute) space onto an tant feature from the MLP without having to retrain its
output (class) space. Cases are represented in the input spaaeeights from scratch. First, we consider briefly different
of the MLP by a vector that contains thdéeature values ofa  criteria for feature assessment and discuss approaches for
case. The output vector of the MLP is used to classify a case,feature selection that have been proposed in the literature.
e.g. by means of the winner takes all rule. An MLP is an We then define four probabilistic measures that establish
interesting alternative to other classifiers: even when the different upper bounds for the marginal contribution of a
type of distribution of the features is unknown an MLP feature. These measures are made operational with metrics
with the optimal number of hidden nodes approaches athat make it possible to estimate these bounds for input
Bayesian classifier and hence its error rate will be close to features of a trained MLP. A method to prune features with-
the minimum error rate (Richard et al., 1991). out having to train the MLP from scratch is also presented.
For many classification tasks a large number of poten- The metrics and the pruning method are embedded in a
tially useful features can be defined and added as input to thebackward search procedure and evaluated in a number of
MLP. In these situations, feature selection is often a desired experiments.
task. Ideally, when the acquisition costs of the features are
equal, one wants to rank the available features according to
2. Background
* Corresponding author. Division of Image Processing, Department of .
Radiology, Leiden University Medical Centre, P.O.B. 9600, NL-2300 RC A number of approaches for feature selection have been
Leiden, The Netherlands; E-mail: michael@Ilkeb.azl.nl. developed (Batitti, 1994; Cibas et al., 1996; Foroutan et al.,
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1987; Holz et al., 1994; Karthaus et al., 1995; Kittler, 1980; algorithm for feature selection (Siedlecki et al., 1989) and
Kudo et al., 1993; Siedlecki et al., 1988, 1989; Stahlberger compared it with forward and backward search. Although
et al.,, 1997). The best subset of features is obtained by athe genetic algorithm outperformed both the forward, back-
feature selection procedure. Such a procedure investigatesvard and branch and bound search schemes, their genetic
different subsets of features according to a search schemeapproach is computationally much more complex. Their
At each step, the feature subsets are compared according texperiments showed that a backward search procedure
an assessment criterion. The procedure terminates when gields “close to” optimal subsets of features (see also

satisfactory feature subset has been found. Foroutan et al., 1987).
Besides statistical fluctuations, backward search, when
2.1. Assessment criteria used for feature selection for MLPs, may lead to a sub-

optimal result because the standard learning algorithms do

Although the marginal contribution is the optimal criter- not guarantee convergence to the global minimum of the
ion for assessing features, it is computationally complex to error function. When the MLP that is trained with the
estimate the minimum error rate that can be obtained from aoptimal subset of features ends up in a local minimum and
(sub)set of features in the general case where the type ofits error rate exceeds the error rate of one of the other MLPs,
distribution of the features is unknown. Alternative the optimal subset of features is not explored further. In this
assessment criteria that are easier to compute have beenase, backward search will result in a suboptimal set of
suggested. Among these, probabilistic distance measuresfeatures. The problem of local minima is usually remedied
dependence measures and entropy measures have bedy training several MLPs, each with different initial weights
proposed (for overviews see Kittler, 1986; Siedlecki et al., and topologies. However, this is a lengthy procedure.
1988). With some distance measures, bounds of the error To overcome this problem we propose a new method for
rate for the assessed feature subset can be determined. Mogtruning an input node from a trained MLP. The pruning
distance measures are inferior to the marginal contribution method adapts the weights that connect the other input
because their relationship with the error rate is often very nodes with the hidden nodes using the regression parameters
loose (Kittler, 1986). Another drawback of using the prob- which predict the feature that is to be pruned. Thereby, most
abilistic distance and dependency measures as assessmenf the knowledge embedded in the MLP is retained and
criteria is that they do not take into account the properties of retraining its weights from scratch may not be necessary.
a particular classifier, i.e. the contribution of each feature to Recently, others have suggested the use of a variant of
classifier performance (Foroutan et al., 1987; Siedlecki et al., “optimal brain surgeon” (Hassibi et al., 1993) to prune
1988). input nodes (Cibas et al., 1996; Stahlberger et al., 1997).

A similar problem exists when a set of features that is We propose a number of measures and metrics that can be
optimal for one type of classifier is used as feature set for used to guide the pruning process and to obtain estimates of
another type of classifier (Batitti, 1994). There is no the performance of the pruned MLP. The feature measures
guarantee that this feature set is also optimal for the otherare all derived for a Bayesian classifier.
classifier.

2.2. Search schemes 3. Four feature measures

A number of different search schemes exist. Besides an We define a set of probability measures to estimate
exhaustive search, which entails comparifig-21 different bounds of the marginal contribution of a feature to the per-
subsets of features, suboptimal schemes such as forward antbrmance of a statistical classifier. Each probability measure
backward search as well as branch and bound searchs made operational by a metric.

(Narenda et al.,, 1977) are the most frequently used.

Examples of algorithms that select features by a forward 3.1. Classification

search are NPPA (Talmon, 1986), ID3 (Quinlan, 1983), an

approach to feature selection (Batitti, 1994) as well as a Classification is assigning a class label to a case based
variant of stepwise discriminant analysis (Cooley et al., on ann-dimensional feature vectbx. Let plw;) denote
1971). For applications of backward search see Nobisthe n-dimensional class-conditional probability density
(1994) and Vogelsang (1993). function (PDF) of then features for clasg j = 1,...,C. In

In practice, forward and backward search as well as the general, classifiers partition the feature space into disjoint
branch and bound scheme do not necessarily lead to the
optimal subset of features. If the performance (on a test Henceforward, an uppercase letter X denotes a matrix, a bold yedter
set) of an MLP is incidentally the best because of statistical column vectorx; € X denotes columirin X, x denotes rovk in X, and
fluctuations, one ends up exploring an inferior subset of Eky' g:e/f”}uer']i?oenmig”irfot'#g]"rl]'gi;('tg(‘te'rtehnzfrg‘gng;?tzﬁcg’gfeiﬁ?%d
features (Foroutan et al., 1987; Siedlecki et al., 1988). As denotes the probability that the eveftis observed, p the probability
a remedy, Siedlecky and Sklansky developed a geneticdensity function of variable.
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regions F?,j =1,...,c. For a minimum error-rate classifier,
cases that occur inerhave the highest posterior probability
of belonging to clas$ and are classified as such. For such

classifiers, Ris given by (Anderson, 1958)
R ={x € R"IP(w;)p(xlwj) > P(ey)p(xlesy), VI # j}

with P(w;) the prior probability of clasg. Denoting the
probability of classifying a clasg case correctly by
P(x € R'lwy;), the correctnesp” of the classifier using

features becomes

(o4
p"= D P(w)P(x € Rley)
j=1

For a minimum error-rate classifier, the marginal contribu-

and the correctness' as

C
p"= D Pley) J P le) J PO IX7H, ) dx | dx™
=1

RJn\k a(xstk)

(8
Eqg. (8) can be used to obtain some insight in the marginal
contribution of featurék. We will approximate the integral
over S,(x*k) in four different ways, on the basis of which we
will estimate the contribution of featute In the following,
we will discuss four different functionq@t*") that approx-
imate the integral. We will implement these functions and
study their usefulness with respect to selecting features to

tion of a feature—the decrease in correctness that results€Move from trained neural networks. First, however, we

when featurek is removed—is

807 = 3 Plu) (P E Rila) ~ PICKE R a) (3
ji=1

with x*® ann — 1 dimensional vector that is equal 1o

except for featuré that has been removed.
3.2. Feature measures
The probability Bx € Rjnle) can be written as

p(xl;)dx, | dx™

Rjn\k % (X¢k)

The range §x¥) is the set ok (for givenx™*) for which x

falls into R:

S = {x € RIP(e)p(X ™, Xicleoj) > Pleo)p(x™, xilley),

vl #j}

R™* denotes the projection of the regiofl Bnto then — 1
dimensions excluding dimensiok i.e. R is the set of

x” for which §(x**) is not empty.

The larger the probability that, will fall in the range
Sj(xik) the less feature&k influences whether the case is
classified into clas$. Using the fact that pfk,xkle) =

#k|w

p(x” lw;)p(xIx™ ,w;), Eq. (5) can be written as

PO /X7, @) - Ple) p(x ™ lw)

ky
50H= {Xk &R pos @) Pl Pl

Itis clear that \ﬂxik) is determined by the relation between
the feature-conditional likelihood ratio (left), the likelihood
ratio of then — 1 other features (right) and the prior

probabilities.

Eqg. (4) can be rewritten as the integral over the product

Jp(x’&klw]-) J PO X7, w;) dx | dx7H
Rjn\k SJ(Xﬂ()

VI#j)

prove that the reduction in correctness that is estimated
with each of these four different functiongﬁk), is always
larger than or equal to the actual reduction that results when
a feature is removed.

Theorem 3.2.1: The decrease in correctness < that

results when feature k is removed is always smaller than

or equal top" — p’*¥, thusAp™ = p" — p' 7K.

Proof: By writing p" — p'*¥ as

"= > Ploy) J PO lap)gy (™) ™ 9
i=1 RN-1

with g; denotingc functions for which 0= gj(x’&") =1,
vx** € R"*and

C
D> g(x*™ e{0,1},vx* er" ! (10)
j=1

the following can be derived

3 pt) | o ladg) ax = )
I= Rn—l

J ;le(wj)p("#k‘wj)gj(xik) o™= (12)
Rn-1 =

C

D {max_1 o [Pl@)p(x*le)] }gi(x™) dx™ = (13)

Rn—1j=1

| e [Pepec i) > gt o= )
R1-1 I=

J max -y, o [Ple)p(x™ lew) | dx™ = (15)
Rn—l
J i P(e)P(x el (x™* € R7¥) dx™* = (16)

Rn—lj:l
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with 1(.) denoting the indicator function that is 1 when The replaceability is another and probably better

x* e Rfk, 0 otherwise. Eq. (16) is equal to estimate of the marginal contribution of featlteln prac-

c tice, E(xklxik) is unknown and will be substituted by an
> Plw) J p(x*lej) dx7* (17) estimate of the population expected value denoted by
j=1 R E(x/x™*) as will become apparent in the operationalization

_ K . ] of the measures in Section 4. We suggest a third measure
with R, j = 1.....C the regions of the optimal Bayes hat takes into account the stochastics of the model used to
decision rule INR™™. So p™* = p’™* and thereforerp compute E(x/x*™*) for a particular value ofk™. So we
=p —p' " holds. _ e replace g{E«/x™¥) € S(x™*)} by a probability distribution

By appropriately selecting the function(g™") using  g(x, Ix**)Ix*¥). The difference betweest’ and the result-

information on the distribution of feature it is possible ing correctness we call the predicted influengg 6f fea-
to minimize the gap between the marginal contribution of a {,re k and is defined as

featureAp™ and the decrease in correctngds- o' ”* that c
re_sults from the substitution of featuke We define four Cfe=p"— Z P(e;) p(xikle) %
different measures that bound the maximum decrease in i=1

n\k
correctness that can occur when featlres removed. R
These four different measures will be made operational in . i K K
Section 4. P(EQ4 X)) dx dx (23

Let us assume that whenever featlrean influence the S (x*)
classification of the case, the case will be misclassified (that 1, potential influence was defined to identify poor fea-
is whenever §x"7) is not equal toR). This assumption  y,re5 However, as we have seen this measure overestimates
implies that the integral the marginal contribution of featurk, because both the
extent of $(x*k) (when F,>(x¢k) # R) and the probability

P04 X, ;) dx (18) of observing values ok, in S;(x™*) are not taken into
S[E) account: the more values observed ijt(1x§k) the less the
in Eq. (8) is set equal to zero fof(8**) # R. Therefore, we feature can influence the classification result. For a poor
define the potential influence ) of featurek as feature, moreover, one may expect that the difference
c between the marginal distributionxpf and the conditional
d=p"— Z P(w)) J p(x¢k|wj)g(§(ﬁk):[@) dx™¥ distribution pé(k|X¢k,wj) will be relatively small. If we
j=1 ik therefore replace m(lxik,w,-) by pf) in Eg. (8), we obtain
! again an estimate of the influence of the feature. The differ-
(19) ence in correctness betweghand the resulting correctness
with we call the expected influence)) of featurek
. C
o0 = { Lo esTRUE @) o=e"= D Pw) | po) | b ot
0: e=FALSE j=1 RI S
Instead of the potential influence which clearly overesti- (24)

mates the contribution of featuieto p" one can also try
to estimate the contribution d' of that part of featuré that

is independent of the other — 1 features. The part of
featurek that is dependent on the other— 1 features is

Although ©" — ¢x), (0" — ud), (0" — i), (0" — 21 € (00"),
in practice one would never use a statistical classifier with a
correctness smaller than

. - C
;:omputed by its expected value given the values of the otherz (p(w]_))Z (25)
eatures j=1
* which is the correctness of a classifier that assigns the class
E(x/x ) = J X P IX7X) dx (21) labels at random, taking the prior distribution into account.

The difference betweep" and the resulting correctness, 4. Four feature metrics
which we will call the replaceability.() of featurek, is an
estimate of the contribution of the independent part of Inpractice, we estimatg, t\, {x andg, from a set of cases.
featurek For each case, the rang@(g k) is obtained from a trained
c MLP. In Appendix A and Appendix B it is shown how this

w=p"— Z P(w)) J p(x*kle)g{E(xklx*k) € S](x*k)} dx K range can be found using a Taylor expansion. The numerical

j=1 n\k
§ 2 Note that a high replaceability is associated with a small valug arid
(22) vice versa.
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precision of the polynomial approximation is determined by
the parametes ., which is derived in Appendix B.

4.1. Definition of an MLP

Let X = (X4, X»,..., X;) denote a data matrix. A vectsy,
which belongs to one af classes, represents thdeature
values of casé. Let o, and By denote the lower and upper
limits of featurek, respectively.ay and 8y should be the
minimum and maximum values that can possibly be
observed for featurk.

Define a feed-forward MLP with one hidden layer with

hidden nodes as a mapping N#[,84],....[an,Gnl} — [v.1] &
0=N(X) =f(WF(Wx—q") — ) (26)

where W is the weight matrix that connects theinput
nodes with theh hidden nodes and ¥the weight matrix
connecting théx hidden with thec output nodesq® andg?

627

the number of elements in the set S. The functionxger&
g{class(N)) = class@)} is 1 when the vectok is classified
correctly, otherwise Q3" is the estimated correctness using
all n features. The metrig, estimatesp, using the MLP
N(x).

Let us define the function (e k) that returns the set of
intervals S that together contain all valuesxgfe [o,G]
which for givenx™* result in vectorx being classified cor-
rectly. The ordered set S {s(1),5(2),..., S(t)}, S(d) = [Ag,
vgl, is an estimate of the rangq(s*k) defined in Eq. (5).

The replaceability of a feature is estimated by determin-
ing the decrease in correctness when feakusesubstituted
by its conditional mean. To estimate the replaceability of a
feature, rowk in X, x¥, is substituted with the valueg?
predicted by multiple linear regression and the modified
cases X are then classified with N.

Write the matrix X= [X*: x®:x™ T where X* denotes
the submatrix composed of the (row) vectafd, ..., x*?

are the bias vectors of the hidden and output nodes, respecand X denotes the submatrix composed of the vectors

tively. The function fR™® — [y,7]%M® is the nonlinear,

x*+0 . x® Define the matrix ¢ = [X*uT:xXT,

bounded activation function applied to each element in the dim(G,) = n X r, dim(u) =r, u; = 1,i = 1,...,r. The pre-

activation vectom, y andy its lower an upper bound. Each
element in the vectas represents the activation of a node in
the output layer.

dicted valuex® is computed ag® =b*TG, with b* the
least mean square (LMS) regression parameters estimated
from the equatio® T = xX¥GL(G,Gy) ?, dim(®*) = n and

For MLPs that are used for classification tasks, each out-the elemenbf the constant term. Using the function

put node generally represents a class. Let the function _
classp) denote the winner takes all rule which returns the N (6K Y)=N((X1, Xz, - %1, ¥ X 1, -

index of the maximal element in the vectwor J if two or
more elements have the maximal value.
Define the matrix E= (e,e,,...,&), dim(g) = ¢, which

specifies the correct class labels of the corresponding‘k™

vectors in X. Wherx; belongs to clasg e; = 1 ande,; =
0, VI # j. The row vectox® = [x ]I, contains the obser-
vations of feature for all r cases.

4.2. Metrics

We first define a function changeg k) which for a given
x”* returns the set of values of= X that placex on the
verge of misclassification withindicating the correct class.
Note that changes) returns the empty se whenVy €
[a,Bd: the casex always obtains the same class label or
always an incorrect class label.

The potential influence of featuteis estimated from

¢ =p"
B i cor(x;, &) X (1— min{cardchangéx;, &,k)), 1})

i=1 r

(27)
which may be simplified to
. — cor(x;, §) X min{ cardchangéx;,e,k)), 1}
o= Z
i=1 r
the fraction of correctly classified cases for which feakire

(28)

%)) (29)
the replaceability, of featurek is estimated from
L g{clas¢N*(x;, k, b* Tgk)) = clas
I ofclastN'(x, kb Tg)) =claste)} .

i=1 r

iy is the change in classifier correctness when feakue
replaced by its predicted vali.

The parameters of the regressivhused to compute the
replaceabilityt, have a stochastic component. For normally
distributed features gjf, the predicted values estimated
from X% =¥ Tg¥ are t-distributed around their true mean
%M = g<Tgk with the varianceV = 62, g“(Gy Gy) ~*g"
(Montgomery et al., 1992)6rzesk is the residual variance
of the regression estimated from

| % — x2
A2
Oresk = ~r—-n (31)
andlll the Euclidian vector norm.

The probability of observing ; in the range S can be
estimated as

PAS & F —N)= > F(Udka,r—n)
sdes \%

—F(xdrxk,r—n)
\

with F the cumulative t-distribution (Parzen, 1960) with

(32

can influence the classification. The function card(S) returnsr — n degrees of freedom.
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The predicted influencé, of featurek can now be esti-  as the left-hand side in the inequality is 1 if and only if the
mated from casex; is classified correctly and featukehas no influence
; KT K on its classification. Consequently, featuxg; can be
be="— p(z(xi, &,K),b" g, —n) (33) replaced by any valug,; € [«aB4d. In this case the
i=1 r right-hand side is also 1. This second fraction can also be

1 when the left-hand side is 0. This happens Whﬁm*é) +*

{k is the change in classifier correctness when fedktuse R andx,; € S; (S # 2). Hence

replaced by its predicted valuié taking the stochastics of
the estimated regression vectirinto account. This metric r cor(x;, &) X (1— min{card(changéx;, ,k)), 1})
is an unbiased estimator ¢f when then features are multi- Z

variate normally distributed, an assumption that also holds =

1 r

for . In practical situations this is hardly ever the case and ~ _ i g{clasgN*(x;, k, K Tgk)) = clas¢N® (&)} 38)
the practical value of the metrics has to be established — & r
empirically. R
The metric for the expected influengg, is computed andey = i
from
. Theorem 4.3.2: For an MLP, N, the potential influence is

s N P((xi &, k) greater than or equal to the predicted influenége= {,
Ok=p i; r (34) whenay = — « and gy = .
observed in one of the intervals in S Theorem 4.3.1. For each case holds

* cor(x, &) X (1 — min{card(changéx;, &, k)), 1})
P(S)= > Jp(xk)dx (35) r

sd)ES

™ _ po(z(xi,&,K), b Tgf,r —n) @9
with p(x,) the marginal PDF of featureestimated from X. r
O, is an estimate of the change in classifier correctiggss whena, = — o andg, = . The assumption ensures that

when featurek is replaced by a value from the marginal

L the right-hand side is 1 when the cases classified cor-
distribution pk).

rectly and featur&k has no influence on its classification.
Henceo, = ¢
4.3. Properties of the feature metrics

Two of the metricsiy and§,, are based on the assumption 5. Feature pruning
that the features are normally distributed. Often this is not
the case, so we briefly investigate the relation between these Each of the four feature metrics defined in the previous
two metrics and the (nonparametric) met{ﬁi@ section estimates a bound for the marginal contribution of a
feature. The feature metrics can be used as criteria to select

Theorem 4.3.1: For an MLP, N, the potential influence is features to be pruned from an MLP.

greater than or equal to the replaceabiliy, = i,. We developed a technique for pruning an input node from
a trained MLP that in many situations makes retraining
Proof: The inequalityd, = i, may be written as superfluous. Let us define LMS pruning:
r .
-y cor(x;, &) X (1—min{card(changéx;, &, k)), 1}) Definition 5.1: Least mean square (LMS) pruning of a fea-
i=1 r ture k from an MLP N consists of creating an MLP N
r . KT K . identical to N but without input node k. The weights ¢f N
=5 giclasgN (x, k, b "g7)) = claseN (&)} that connect the r- 1 input nodes with the h hidden nodes
i=1 r as well as their bias terms acquire values such that N
(36) classifies a set of cases identically as N does when feature
k is replaced by, its LMS-predicted value
It can be proved that for case LMS-pruning is obtained as follows. Assume for simpli-

city that inputnis to be pruned from N. Defingas the input
vector to the hidden nodes before the activation functign f(
is applied, see Eq. (26):

cornx;, &) X (1— min{card(changéx;, &,Kk)), 1})
r

gfclasgN"(x;, k, b* Tg)) = clasgN" (&)}
= - BN a=wix-q' (40)
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) Class 1

) Class 2

Class 3

Fig. 1. Weights on the dotted connections are removed by LMS-pruning.
The dashed weights are modified.

From the sample X, compute the regression parameter

vectorb" and split it into the coefficient vectd”™ and the

constant ternbf), b” = (b™ 7,b}) T. We replacex, in Eq. (40)

by its predicted valu&, ; (for casei) computed from
n—1

Loi=bA+ D % (41)
=1

Combining Egs. (40) and (41) gives for hidden nade

n—-1 n-1

ay= > W xj,i—qa+w$,n<b:+ D b,-”°x,—,i> (42)
j=1 j=1

which simplifies to
n—-1

au= > (Wh;+W5 b")x;i — (a5 — W, nbi) (43)
j=1

Define £ ;= Wy +Wq nb'), 65=05 — W 4bh and con-
struct a new MLP N that hasn — 1 input nodes and the

629

This corollary specifies a lower bound for the correctness
of a network from which featurk has been pruned as it is
possible to retrain the LMS-pruned network using the
weights of N as initial weight configuration and thereby
possibly improve its correctness.

6. Experiments

We conducted a set of experiments to assess the devel-
oped metrics and the pruning method introduced in Section
5. We constructed two artificial classification problems to
investigate whether the features were ranked correctly by
each of the feature metrics. For each classification problem,
the minimum error rate is computed analytically.

6.1. First experiment

In the first problem two classes A and B were character-
ized by 6 features with the centrgg = (0,0,0,0,0,0) and
ps = (1.75, 1.50, 1.25, 1.00, 0.75, 0.30)respectively.
Feature 1 has the largest discriminative power, feature 6
the smallest. We sampled 500 uncorrelated observations
from the normal distribution D{ua,l) and 500 from
D(xlpg,) with | the identity matrix. The observations
were divided into a training set and a test set each containing
250 vectors from class A and 250 from class B.

In total 30 MLPs with 2 hidden nodes, all with different
initial weight configurations, were trained for 700 cycles
with back-propagation in offline mode. The average correct-
ness of the MLPs for the test set wag,y = 0.9274

same number of hidden nodes as N with the weight matrix (=0.0027). This correctness is very close to the Bayesian

W2, the bias vectog? and the new weight matri€* and
bias vecto’. Now featurex™ has been LMS-pruned from
N

Fig. 1 illustrates which weights are modified (dashed) and

which are pruned (dotted) when feature is pruned.
Replacing featuré with its conditional mean enforces a

COITeCtNessy payes= 0.9292.

We used Kendall's measure . Tfor the correlation
between several judges and a criterion ranking (Siegel et
al., 1988) to compare the true (criterion) ranking of the 6
features with the ranking obtained from each feature metric.
Table 1 shows the average rank order correlation T

new partitioning of the class space. The boundaries between the 30 MLPs and the true ranking that follows
that separate the new regions are determined by the interfrom the parameterg, and ug.

section between the conditional mean (as function of the

featuresx;tk) and the class boundaries given bj), R=
1,....c

The first row in Table 1 shows that potential influerige
is the poorest ranking criterion whereas the expected influ-
enceg, resulted in an optimal ranking (. = 0.01). The

The pruning operation turns out to be useful because thelatter is to be expected as the features are independent

following holds.

Corollary 5.2: A network N with a correctneg8 will, when
feature k is LMS-pruned, have a correctngss= 5" — i,.

Table 1

(within the two classes). The predicted influence and the
replaceability are slightly worse ranking criteria. An analy-

sis of the weights of the MLPs indicated that feature 6 was
given a larger weight than feature 5 in most of the 30 MLPs.

The rank correlations Jbetween the feature raking of the 30 MLPs and the true ranking. These are computed for two numerical precisiop.j@featse

polynomial approximation

T, (pot. infl.) T, (exp. infl.) T, (pred. infl.) T, (repl.)
emax = 0.01 0.813 1.000 0.884 0.920
emax = 0.0001 0.778 1.000 0.924
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Relative
difference
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Fig. 2. Average relative difference between the potential influence as computed with the precision Jjgyel9.01 ande 5 = 0.0001.

6.2. Second experiment cases unequal to zero when featurds varied within its
range.

In the second experiment, we investigated the influence We investigated the correlation between some of the fea-
of the numerical precision. On the feature metrics. We  ture metrics. The correlations in Table 3 indicate that the
recomputed all feature metrics except the replaceahility replaceability and the predicted influence metrics are clo-
(becausey does not depend 0an,y) Using the 30 MLPs  sely related, which is also to be expected from their defini-
from the first experiment with a higher precision level for tion. Also the expected and the predicted influence are
the polynomial approximatiorg,.x = 0.0001. The second correlated. The potential influence is almost independent
row in Table 1 shows the coefficient of agreement T of the two other influence metrics.
between the true raking and the average ranking assigned
by each metric to the features in the 30 MLPs with the 6.3. Third experiment
increased precision level. The agreement between the pre-
dicted influence and the true rank slightly improves. A third experiment was designed to investigate how

The feature metric that was influenced most by the level of effective LMS-pruning is and to compare the ranking of
precision is the potential influence. Fig. 2 shows the relative each metric with the true ranking when the features contain
discrepancies between the potential influence computed fordependencies. We designed a classification problem with
the six features, for both prediction levels of the polynomial three classes A, B and C that are characterized by six fea-

approximation g max = 0.01 andemay = 0.0001,[dy(emax= tures. The centra of A and B were identical to the previous
0.01) — ¢y (emax= 0.0001)]/dy(emax= 0.01). Table 2 shows  experiments angc = — ug. The three classes have iden-
the potential influence of the six features. tical covariance matriceS, = Xg = X, see Table 4.

The discrepancies betweengy(emax=0.01) and We sampled 500 vectors from ®f4,Z), 500 from DI

Hr(emax=0.0001) become small when the features are pg,Z) and 500 from Dgluc,Z). These were divided into a

unimportant. This is also to be expected. For unimportant

features, small fluctuations of the polynomial approxima- Table 3 )

tion around the true difference in outout— o, are unlikel Correlations between the four feature metrics computed among the 30
. Yy ras y MLPs with the precision level used in the second experiment

to lead to false zero crossings, becaogse- o, is in more

Feature Pot. vs. exp.Exp. vs. predPred. infl. vs. Pot. vs. pred.
influence infl. repl. infl.

Table2 _ » 1 0.000 0.117 0.247 0.006
Potential influence computed for the two different levels of precision for 0.280 0.295 0.515 0.123
each of the six features 3 0.003 0.565 0.295 0.004
Precision 1 2 3 4 5 6 4 0.380 0.945 0.966 0.364

5 0.045 0.806 0.919 0.000
0.01 0.865 0.795 0.799 0.519 0.117 0.135 6 0.001 0.301 0.640 0.102

0.0001 0.727 0.647 0.663 0.462 0.111 0.134 Avg. 0.118 0.505 0.597 0.100
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Table 4
The covariance matrix used in the third experiment

produces ties when the number of features is below 6. So
when the classification relies on a few features, their contri-
bution can only be assessed by taking the probability density

1.0 0.4 0.0 0.0 0.0 0.0
1.0 0.0 0.0 03 0.0 function of the features into account. The expected influence

1.0 0.3 0.0 0.0 only resulted in a good ranking when the number of features

1.0 —0.4 0.7 was reduced to 3. We conclude that in this experiment where
1.0 f'g the features contain dependencies, the predicted influence

and replaceability are the best ranking criteria.

Fig. 3 shows the decrease in the average correctness
training and a test set each consisting of 750 vectors. Thirty among the 30 MLPs when features are LMS-pruned. The
MLPs with 2 hidden nodes, all with different initial weight correctness is estimated with a test set that also contains 750
configurations, were trained for 2000 cycles. cases. For this classification problem, the pruning method is

Whereas the correctness of the Bayesian classifier iseffective as the difference between the observed and theo-
0.9124, the correctness of each MLP on the test set wasretical correctness remains small, even when the pruned
0.9093. That all 30 MLPs have the same correctness isMLPs were not retrained.
due to the fact that these networks have exactly the number
of degrees of freedom required for this classification task. In
the previous experiment, the networks had also two hidden 7. Discussion
nodes although only one was necessary for that dichoto-
mous classification task. Four measures were defined to assess the importance of a

Table 5 contains the marginal contribution of each feature feature for a classifier. The measures were made operational
for a Bayesian classifier and the true ranking of the features.by metrics. One could ask whether all four are needed to assess
The feature with the smallest marginal contribution is the the importance of features. In our experiments, the replace-
correct one to prune. ability and the predicted influence are the best ranking criteria

The four feature metrics were used to estimate the impor- when the features contain dependencies and the expected
tance of each feature among the 30 MLPs using the set ofinfluence the best criterion when the features are uncorrelated.
training vectors. The most replaceable feature (smalgst The potential influence metric can aid the construction of
was LMS-pruned and the importance of the five remaining classifiers for sequential classification tasks. Quinlan distin-
features was estimated among the 30 LMS-pruned MLPs. guishes between sequential and parallel classification tasks
This procedure was continued until only the two features 2 (Quinlan, 1993). In parallel classification tasks all features
and 5 remained. The pruned MLPs were not retrained. are relevant for the classification of each case. In sequential
Again, we used Kendall's measure I compare the true  classification tasks only a few of the available features
rank of the features with the ranking obtained by each determine the class label for a specific case. Whether a
feature metric. The correlation coefficients are shown in feature is relevant when classifying a specific case, depends
Table 6. The correlation is not always 1 between the true on the value of one (or more) of the other features. When an
and the observed feature ranking. When the metric rankedMLP has been trained for a classification task, the potential
the least important feature correctly, this is indicated with influence metric can be used to identify features that are
“#". The symbol “*" indicates that some of the features only (potentially) relevant for a small subset of cases. The
obtain the same ranking (ties). least important of the features can then be LMS-pruned.

Table 6 indicates that the metrics for the predicted influ- The procedure can be repeated for— 2 features, etc.
ence and the replaceability are superior to the other two Thereby, the potential influence metric helps to establish
metrics. Another observation is that the potential influence the order in which features can be used by a sequential

Table 5

The true marginal contributions and feature rankings for a Bayesian classifier after successively removing the least contributing feature
Feature: 1 2 3 4 5 6

M. contribution 0.0125 0.0426 0.0011 0.0398 0.0643 0.0137
Ranking 5 2 6 3 1 4

M. contribution 0.0123 0.0473 0.0785 0.0910 0.0227
Ranking 5 3 2 1 4

M. contribution 0.1371 0.1073 0.1401 0.0302
Ranking 2 3 1 4

M. contribution 0.1504 0.0872 0.1137

Ranking 1 3 2

M. contribution 0.2534 0.0838

Ranking 1 2
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~..._  Bayes correctness

MLP-correctness

T T T

6 5 4 3 2
Number of features in MLPs

Fig. 3. Average decrease in correctness among the 30 MLPs lies close to the Bayes optimal correctness.

classifier, e.g. a cascade of MLPs. Building such a cascaded The overall correctness of a classifier is one of many
MLP classifier is, however, not trivial as the networks that possible yardsticks that can be used to measure the
are based on only a subset of features should be able to leavénportance of a feature. If one wants an assessment that is
cases unclassified that can only be classified correctly usingindependent of the prior probability of each class, the class-
additional features. conditional correctness can be used as criterion (Egmont-
The estimates computed with the four metrics all have a Petersen et al., 1994). Class-conditional variants of our
certain variance. In some cases, one might want to testfeature metrics can be easily computed by summing only
whether the difference between two features with respect over cases that belong to a given class.
to a measure is significant or not. Consequently, one needs We developed a numerical approach based on Taylor
to know the underlying distribution of each estimate. We expansions to solve the— 1 equations that determine the
leave this issue for further research. values of each feature for which two outputs of the MLP are
The major advantage of LMS-pruning is that one can equal. The polynomial approach solves the equations with
prune a feature from a good MLP without having to train sufficient accuracy but is computationally heavy as a differ-
its weights from scratch. The amount of computation ent set of polynomial coefficients has to be computed for
needed by a backward search is reduced as one does natach featurd in each feature vectot;. Laguerre’s method,
need to train a set of networks with different initial weight which is used to find all roots in each polynomial, is also
configurations for each combination of — 1 features. computationally complex. For one MLP with six input
When a good subset of features has been identified, onenodes, two hidden and three output nodes, the computation
can always try to retrain the MLP and possibly improve time for 750 vectors was 18 minutes on a Pentium-133 PC.
its performance. Our approach does not take into account
that the number of hidden nodes that is optimal when using
n features may not be optimal for — 1 features. How to 8. Conclusion
prune hidden nodes is left as a topic for further research.
We defined a framework in which four measures for the
Table 6 importance of a feature for a classifier are developed. These
Correlation between the true ranking and the ranking obtained by each of measures are related to the marginal contribution of a
the four feature metrics as a function of the number of input nodes of the feature. For each measure, we defined a metric to assess

MLPs the importance of features for an MLP. It was suggested
Features 6 5 4 3 2 to use the metrics as ranking criteria to identify which fea-
contained tures to prune from a trained MLP. When one wants to prune
T.(pot. infl) 0.867# 0.738* 0.707* 0.817* 0.000 * features according to a backward search scheme, we suggest
T.(exp.infl) 0.733# 0.600 0.000# 1.000# 1.000 # the use of the replaceability as a raking criterion. This
Tc(pred.infl) 0.867# 1.000# 1.000# 1.000# 1.000# metric gives directly the correctness of the LMS-pruned
T. (repl.) 0.867# 1.000# 1.000# 1.000# 1.000# MLP and the Taylor expansion is not needed to compute it.

# Indicates that the least important feature was always correctly assessed. EXperiments illustrated that using LMS-pruning in com-
* Indicates ties. bination with a backward search strategy enabled us to
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prune features from an MLP in an efficient way. The error

rate obtained after a feature was LMS-pruned deviated only

slightly from the Bayesian error rate. So in our experiments
retraining the pruned networks from scratch could be
avoided. We conclude that LMS-pruning is a convenient
and computationally simple procedure to remove input
nodes from an MLP.
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Appendix A

In Section 4 we defined the function chamyefor a
specific vectorx, this function returns values of featuke
for which more than one element of the output N(x) of
the MLP N has the maximum value. To evaluate the func-
tion change), we need to identify the values of featle
[a,B] that cause two output nodes to be maximal including

the node that represents the correct class of the case. Given

the vectolx, all values except, are kept fixed which allows
us to writeo; — o, as a function ofx,. The roots of this
equation comprise the values of featlwreve seek. As all
nodes different t§ can be maximal, in total — 1 equations
need to be solved; — o, = 0, VI # j. The subset of roots
occurring in the intervald;,3] for which o; = max(), j =
classg), VI # j, constitutes the set of values to be returned

by changey.
As the output valu®; is computed from

o =1 (w P W — o) - ) (A1)

thec — 1 equations can be written as
f (wmzf (W — ) — qu) _f (w<I 28 Wik — ) — q|2) —0
(A.2)

for | # j. Solutions to these equations are called zero cross-

ings. As f¢) is a monotonous transformation and )0,
simplifies to
(w72~ wWi2) FWx — g) = (f — ) =0 (A-3)

Now, the expression W — g can for hidden node be
written as

W, 1 + Vi (A.4)

with

V= ZVVlu,iXi — (A.5)
i#k

633
Substituting Eq. (A.4) in Eq. (A.3) gives
(W2 — W) (i + V) — (@ - o) =0 (A6)
or written as summation over thehidden nodes
h
D (W2 —WE ) F W i+ V) — (07 — 67) =0 (A7)
u=1

These equations cannot be solved analytically due to the
nonlinear function ).

We use a polynomial approximation to the nonlinear
function specified as(kk)ztanr(wﬁ,kxk+vﬁ). Its Taylor
expansion is given by

v (% —X0d)"
M= D, 0 (x0) (A8)
n=0 :
We incorporate the constary into the coefficients of the
polynomial using the binomial theorem

(a_ b)n= i <n)at(_ b)n—t
t=0\ 1

The tth coefficient (coefficient ofxy)") of the polynomial
IT,(x,) becomes

(A.9)

n

(

> (—%a)" "
L O(xy)

n!

[

l;bu,t = Zt

The coefficients of the polynomial expansions are summed
over the hidden nodes to obtain one polynomial that
approximates the — 1 equation®; — 0, =0, # k

% / h
tZQ( Zl (szu - Wﬁu)‘/’u,t) (Xk)t - (qu — CI|2) =0 (A.12)

In practice, the degree of the polynomial expansion has to be
limited. We have set the maximum degree to 4 and approxi-
mateo; — o, with a number of concatenated polynomials.
Each polynomial approximates; — o, with a specified
precision in a subintervalXpegXend Of [eri,8i]. Together,

the polynomials provide an approximation over the whole
interval. In Appendix B it is shown how the valuggg Xend

and "(xo) are computed. For a discussion of polynomial
approximation of MLPs see Williamson et al. (1995).

We use Laguerre’s method (Press et al., 1988) to find all
real and complex roots of the polynomials. We discard com-
plex roots and roots outside the interval in which each poly-
nomial provides a sufficiently accurate approximation. A
root is considered as complex when the value of its imagin-
ary component exceeds the numerical precigigg.

(A.10)

Appendix B

We introduce the approximation precisiop., > 0. The
function f(vvlu WX+ V) for hidden nodeu is approximated
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Polynomials, 2 hidden nodes
Ol
. Pol. 1,1 IPol. 1,2 Pol. 1,3
Hidden 1 ¢
Xo 1 X pegz —-—-
Kpegr T X endt

. Pol. 2,2 Pol. 2,3, Pol. 2,4

Hidden 2 Pol. 2,1 ol 0 0

01’ 0,

Fig. 4. Coefficients of the consecutive polynomials are chosen such that

VX € [akB: € = emax (See hidden node 1). The coefficients of the

polynomials corresponding to each hidden node are added resulting in

one polynomial pertaining to each intersecting interval.

with a series of Taylor polynomials, each with a different
value of xo. These values ok, are chosen such that the
approximation interval §,egXend Of the respective poly-
nomials together span the intervad[3,], see Fig. 4.

We use Lagrange’s remainder formula to determine the

approximation interval of each polynomiat,fgXend With
Xo € [XpegXend fOr a given maximal approximative error
emax (Ralston, 1965; Sydseeter, 1993):

|X— Xo|n+l
(n+1)!

where M is the maximum absolute value of"f)(x), the
(n + 1)th derivative of fK), Yx € m (for simplicity m =

R). For a fixedXyeq (=0 for the first polynomial), whea .,

is specified, we may determirxg andx.,qof the polynomial
that guarantees an error smaller thag, by rearranging
Eqg. (B.1). Now solving forx, gives

(B.1)

Emax =

N\ (h+1)7?
(W) = IX— Xl (B.2)
Ema(n+ DN OFD
xmy_<JEéM__l> %, (.3)
and forXeng
emadn+ )N Y
m+(i@%—l> =Xend (B.4)

The extreme valud! can be found by solvingF?(x) = 0
and choosing the root that maximizé&§™(x)l. The nth
derivative V() is defined as

/) = T tanite) ©5)
with X, a value in the domain of tankj(

We limit the number of the coefficients in a polynomial to
5. This allows us to use the roots 8P¢x) = 0 to determine
the begin and end points of a polynomidj(x,) with the
degree 4. The fifth and sixth derivatives of the function
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f(X) = tanh{vx + v) with respect tox are
4 2
£5)(x) = B0 2 costfwx+v)™ — 15 coslfwx+ v)“ + 15
cosh{wx+v)®
(B.6)
fO(x) = — 160° sinh(wx+ V)
2 costwx+ v)* — 30 coslfwx+ v)? + 45
(B.7)
coshwx+v)’
The roots f(x) = 0 are
_V (B.8)
In( =V/3\/5+ 5\/_—1—,/ 13 3\/13> -V
+ w (B.9)
and
In( \f\/ 5f+ E)—g\/175>—v
N w
(B.10)

For each hidden node, the origig, of the first polynomial
is computed from Eq. (B.3) where the begin poiply = oy,
the smallest value featukecan possibly take. Thexy,q is
computed from Eq. (B.4). The point,p of the second
polynomial is set equal tenq. This procedure is continued
until xeng Of @ polynomial exceeds the limfy.

For an MLP with a number of hidden nodes, the poly-
nomials specified in Eq. (A.11) have to be added taking into
account the approximation interval of each polynomial. So,
for example, for an MLP with 2 hidden nodes, the poly-
nomial II,; approximates hidden node 1 in the
interval [Xpeq 1.Xena,]] @ndII; 1 hidden node 2 in the interval
[Xbeg2,3Xend2,{, S€€ Fig. 4. Now, we construct a polynomial
that approximates; — o, by adding the coefficients of the
two polynomialsll, ; andII, ; of which the approximation

intervals Kpeg, 1, Xendt,1] @aNd Xoe 1,Xene 1] OVETlap.
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