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Abstract

In this paper we establish a mathematical framework in which we develop measures for determining the contribution of individual features
to the performance of a classifier. Corresponding to these measures, we design metrics that allow estimation of the importance of features for
a specific multi-layer perceptron neural network. It is shown that all measures constitute lower bounds for the correctness that can be obtained
when the feature under study is excluded and the classifier rebuilt. We also present a method for pruning input nodes from the network such
that most of the knowledge encoded in its weights is retained. The proposed metrics and the pruning method are validated with a number of
experiments with artificial classification tasks. The experiments indicate that the metric called replaceability results in the tightest error
bounds. Both this metric and the metric called expected influence result in good rankings of the features.q 1998 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Multi-layer perceptrons (MLPs) have been trained to
perform various classification tasks (Cibas et al., 1996;
Cunningham et al., 1992; Hansen et al., 1992; Harrison
et al. (1991); Hart et al., 1989; Hripcsak, 1990; Moallemi,
1991; Poli et al., 1991; Schiøler et al., 1992; Schizas et al.,
1990; Vogelsang, 1993). An MLP classifier performs a
mapping from an input (feature or attribute) space onto an
output (class) space. Cases are represented in the input space
of the MLP by a vector that contains then feature values of a
case. The output vector of the MLP is used to classify a case,
e.g. by means of the winner takes all rule. An MLP is an
interesting alternative to other classifiers: even when the
type of distribution of the features is unknown an MLP
with the optimal number of hidden nodes approaches a
Bayesian classifier and hence its error rate will be close to
the minimum error rate (Richard et al., 1991).

For many classification tasks a large number of poten-
tially useful features can be defined and added as input to the
MLP. In these situations, feature selection is often a desired
task. Ideally, when the acquisition costs of the features are
equal, one wants to rank the available features according to

the change in correctness that results from removing or
adding the respective feature from the feature set (Siedlecki
et al., 1988). We define the marginal contribution of a
featurek among a set ofn features as the difference in
error rate of a classifier based on alln features and a classi-
fier based on all but thekth feature.

Our goal is to estimate the marginal contribution of each
feature used in a trained MLP and to prune the least impor-
tant feature from the MLP without having to retrain its
weights from scratch. First, we consider briefly different
criteria for feature assessment and discuss approaches for
feature selection that have been proposed in the literature.
We then define four probabilistic measures that establish
different upper bounds for the marginal contribution of a
feature. These measures are made operational with metrics
that make it possible to estimate these bounds for input
features of a trained MLP. A method to prune features with-
out having to train the MLP from scratch is also presented.
The metrics and the pruning method are embedded in a
backward search procedure and evaluated in a number of
experiments.

2. Background

A number of approaches for feature selection have been
developed (Batitti, 1994; Cibas et al., 1996; Foroutan et al.,
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1987; Holz et al., 1994; Karthaus et al., 1995; Kittler, 1980;
Kudo et al., 1993; Siedlecki et al., 1988, 1989; Stahlberger
et al., 1997). The best subset of features is obtained by a
feature selection procedure. Such a procedure investigates
different subsets of features according to a search scheme.
At each step, the feature subsets are compared according to
an assessment criterion. The procedure terminates when a
satisfactory feature subset has been found.

2.1. Assessment criteria

Although the marginal contribution is the optimal criter-
ion for assessing features, it is computationally complex to
estimate the minimum error rate that can be obtained from a
(sub)set of features in the general case where the type of
distribution of the features is unknown. Alternative
assessment criteria that are easier to compute have been
suggested. Among these, probabilistic distance measures,
dependence measures and entropy measures have been
proposed (for overviews see Kittler, 1986; Siedlecki et al.,
1988). With some distance measures, bounds of the error
rate for the assessed feature subset can be determined. Most
distance measures are inferior to the marginal contribution
because their relationship with the error rate is often very
loose (Kittler, 1986). Another drawback of using the prob-
abilistic distance and dependency measures as assessment
criteria is that they do not take into account the properties of
a particular classifier, i.e. the contribution of each feature to
classifier performance (Foroutan et al., 1987; Siedlecki et al.,
1988).

A similar problem exists when a set of features that is
optimal for one type of classifier is used as feature set for
another type of classifier (Batitti, 1994). There is no
guarantee that this feature set is also optimal for the other
classifier.

2.2. Search schemes

A number of different search schemes exist. Besides an
exhaustive search, which entails comparing 2n ¹ 1 different
subsets of features, suboptimal schemes such as forward and
backward search as well as branch and bound search
(Narenda et al., 1977) are the most frequently used.
Examples of algorithms that select features by a forward
search are NPPA (Talmon, 1986), ID3 (Quinlan, 1983), an
approach to feature selection (Batitti, 1994) as well as a
variant of stepwise discriminant analysis (Cooley et al.,
1971). For applications of backward search see Nobis
(1994) and Vogelsang (1993).

In practice, forward and backward search as well as the
branch and bound scheme do not necessarily lead to the
optimal subset of features. If the performance (on a test
set) of an MLP is incidentally the best because of statistical
fluctuations, one ends up exploring an inferior subset of
features (Foroutan et al., 1987; Siedlecki et al., 1988). As
a remedy, Siedlecky and Sklansky developed a genetic

algorithm for feature selection (Siedlecki et al., 1989) and
compared it with forward and backward search. Although
the genetic algorithm outperformed both the forward, back-
ward and branch and bound search schemes, their genetic
approach is computationally much more complex. Their
experiments showed that a backward search procedure
yields ‘‘close to’’ optimal subsets of features (see also
Foroutan et al., 1987).

Besides statistical fluctuations, backward search, when
used for feature selection for MLPs, may lead to a sub-
optimal result because the standard learning algorithms do
not guarantee convergence to the global minimum of the
error function. When the MLP that is trained with the
optimal subset of features ends up in a local minimum and
its error rate exceeds the error rate of one of the other MLPs,
the optimal subset of features is not explored further. In this
case, backward search will result in a suboptimal set of
features. The problem of local minima is usually remedied
by training several MLPs, each with different initial weights
and topologies. However, this is a lengthy procedure.

To overcome this problem we propose a new method for
pruning an input node from a trained MLP. The pruning
method adapts the weights that connect the other input
nodes with the hidden nodes using the regression parameters
which predict the feature that is to be pruned. Thereby, most
of the knowledge embedded in the MLP is retained and
retraining its weights from scratch may not be necessary.
Recently, others have suggested the use of a variant of
‘‘optimal brain surgeon’’ (Hassibi et al., 1993) to prune
input nodes (Cibas et al., 1996; Stahlberger et al., 1997).
We propose a number of measures and metrics that can be
used to guide the pruning process and to obtain estimates of
the performance of the pruned MLP. The feature measures
are all derived for a Bayesian classifier.

3. Four feature measures

We define a set of probability measures to estimate
bounds of the marginal contribution of a feature to the per-
formance of a statistical classifier. Each probability measure
is made operational by a metric.

3.1. Classification

Classification is assigning a class label to a case based
on ann-dimensional feature vector1 x. Let p(xlq j) denote
the n-dimensional class-conditional probability density
function (PDF) of then features for classj, j ¼ 1,…,c. In
general, classifiers partition the feature space into disjoint

1 Henceforward, an uppercase letter X denotes a matrix, a bold lettery a
column vector.x i [ X denotes columni in X, x 〈k〉 denotes rowk in X, and
xk;i thekth element in columni in X. The ith element in vectory is denoted
by yi. A function is in the main text rendered by f(•). In general, P(E)
denotes the probability that the eventE is observed, p(x) the probability
density function of variablex.
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regions Rn
j , j ¼ 1,…,c. For a minimum error-rate classifier,

cases that occur in Rnj have the highest posterior probability
of belonging to classj and are classified as such. For such
classifiers, Rnj is given by (Anderson, 1958)

Rn
j ¼ { x [ RnlP(qj)p(xlqj) . P(ql)p(xlql), ;l Þ j} (1)

with P(q j) the prior probability of classj. Denoting the
probability of classifying a classj case correctly by
P(x [ Rn

j lqj), the correctnessrn of the classifier usingn
features becomes

rn ¼
∑c

j ¼ 1
P(qj)P(x [ Rn

j lqj) (2)

For a minimum error-rate classifier, the marginal contribu-
tion of a feature—the decrease in correctness that results
when featurek is removed—is

DrÞk ¼
∑c

j ¼ 1
P(qj) P(x [ Rn

j lqj) ¹ P(xÞk [ RÞk
j lqj)

ÿ �
(3)

with xÞk an n ¹ 1 dimensional vector that is equal tox
except for featurek that has been removed.

3.2. Feature measures

The probability P(x [ Rn
j lqj) can be written as

∫
Rn w k

j

∫
Sj (xÞk)

p(xlqj)dxk

264
375dxÞk (4)

The range Sj(x
Þk) is the set ofxk (for givenxÞk) for whichx

falls into Rn
j :

Sj(xÞk) ¼ { xk [ RlP(qj)p(xÞk,xklqj) . P(ql)p(xÞk,xklql),

;l Þ j} ð5Þ

Rn w k
j denotes the projection of the region Rn

j onto then ¹ 1
dimensions excluding dimensionk, i.e. Rn w k

j is the set of
xÞk for which Sj(x

Þk) is not empty.
The larger the probability thatxk will fall in the range

Sj(x
Þk) the less featurek influences whether the case is

classified into classj. Using the fact that p(xÞk,xklq j) ¼

p(xÞklq j)p(xklxÞk,qj), Eq. (5) can be written as

Sj(x
Þk) ¼ xk [ R

����� p(xklxÞk,qj)
p(xklxÞk,ql)

.
P(ql)
P(qj)

p(xÞklql)
p(xÞklqj)

, ;l Þ j
	(

(6)

It is clear that Sj(x
Þk) is determined by the relation between

the feature-conditional likelihood ratio (left), the likelihood
ratio of the n ¹ 1 other features (right) and the prior
probabilities.

Eq. (4) can be rewritten as the integral over the product

∫
Rn w k

j

p(xÞklqj)
∫

Sj (xÞk)

p(xklxÞk,qj) dxk

264
375dxÞk (7)

and the correctnessrn as

rn ¼
∑c

j ¼ 1
P(qj)

∫
Rn w k

j

p(xÞklqj)
∫

Sj (xÞk)

p(xklxÞk,qj) dxk

264
375dxÞk

(8)

Eq. (8) can be used to obtain some insight in the marginal
contribution of featurek. We will approximate the integral
over Sj(x

Þk) in four different ways, on the basis of which we
will estimate the contribution of featurek. In the following,
we will discuss four different functions gj(x

Þk) that approx-
imate the integral. We will implement these functions and
study their usefulness with respect to selecting features to
remove from trained neural networks. First, however, we
prove that the reduction in correctness that is estimated
with each of these four different functions gj(x

Þk), is always
larger than or equal to the actual reduction that results when
a feature is removed.

Theorem 3.2.1: The decrease in correctnessDrÞk that
results when feature k is removed is always smaller than
or equal torn ¹ r9Þk, thusDrÞk # rn ¹ r9Þk.

Proof: By writing rn ¹ r9Þk as

rn ¹
∑c

j ¼ 1
P(qj)

∫
Rn¹ 1

p(xÞklqj)gj(xÞk) dxÞk (9)

with gj denotingc functions for which 0# gj(x
Þk) # 1,

;xÞk [ Rn¹1 and∑c

j ¼ 1
gj(x

Þk) [ {0 , 1} , ;xÞk [ Rn¹ 1 (10)

the following can be derived∑c

j ¼ 1
P(qj)

∫
Rn¹ 1

p(xÞklqj)gj(xÞk) dxÞk ¼ (11)

∫
Rn¹ 1

∑c

j ¼ 1
P(qj)p(xÞklqj)gj(xÞk) dxÞk# (12)

∫
Rn¹ 1

∑c

j ¼ 1
maxl ¼ 1, ::,c P(ql)p(xÞklql)

� �� 	
gj(xÞk) dxÞk ¼ (13)

∫
Rn¹ 1

maxl ¼ 1, …,c P(ql)p(xÞklql)
� �∑c

j ¼ 1
gj(xÞk) dxÞk# (14)

∫
Rn¹ 1

maxl ¼ 1, ::,c P(ql)p(xÞklql)
� �

dxÞk ¼ (15)

∫
Rn¹ 1

∑c

j ¼ 1
P(qj)p(xÞklqj)I(xÞk [ RÞk

j ) dxÞk ¼ (16)
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with I(.) denoting the indicator function that is 1 when
xÞk [ RÞk

j , 0 otherwise. Eq. (16) is equal to∑c

j ¼ 1
P(qj)

∫
RÞk

j

p(xÞklqj) dxÞk (17)

with RÞk
j , j ¼ 1,…,c the regions of the optimal Bayes

decision rule inRn¹1. So rÞk $ r9Þk and thereforeDrÞk

# rn ¹ r9Þk holds.
By appropriately selecting the function gj(x

Þk) using
information on the distribution of featurek, it is possible
to minimize the gap between the marginal contribution of a
featureDrÞk and the decrease in correctnessrn ¹ r9Þk that
results from the substitution of featurek. We define four
different measures that bound the maximum decrease in
correctness that can occur when featurek is removed.
These four different measures will be made operational in
Section 4.

Let us assume that whenever featurek can influence the
classification of the case, the case will be misclassified (that
is whenever Sj(x

Þk) is not equal toR). This assumption
implies that the integral∫
Sj (xÞk)

p(xklxÞk,qj) dxk (18)

in Eq. (8) is set equal to zero for Sj(x
Þk) Þ R. Therefore, we

define the potential influence (fk) of featurek as

fk ; rn ¹
∑c

j ¼ 1
P(qj)

∫
Rn w k

j

p(xÞklqj)g(Sj(xÞk) ¼R) dxÞk

(19)

with

g(e) ¼
1 : e¼ TRUE

0 : e¼ FALSE

(
(20)

Instead of the potential influence which clearly overesti-
mates the contribution of featurek to rn one can also try
to estimate the contribution torn of that part of featurek that
is independent of the othern ¹ 1 features. The part of
featurek that is dependent on the othern ¹ 1 features is
computed by its expected value given the values of the other
features

E(xklxÞk) ¼

∫`
¹ `

xkp(xklxÞk) dxk (21)

The difference betweenrn and the resulting correctness,
which we will call the replaceability (ik) of featurek, is an
estimate of the contribution of the independent part of
featurek

ik ; rn¹
∑c

j ¼ 1
P(qj)

∫
Rn w k

j

p(xÞklqj)g{E(xklxÞk) [ Sj(xÞk)} dxÞk

(22)

The replaceability2 is another and probably better
estimate of the marginal contribution of featurek. In prac-
tice, E(xklxÞk) is unknown and will be substituted by an
estimate of the population expected value denoted by
Ê(xklxÞk) as will become apparent in the operationalization
of the measures in Section 4. We suggest a third measure
that takes into account the stochastics of the model used to
computeÊ(xklxÞk) for a particular value ofxÞk. So we
replace g{E(xklxÞk) [ Sj(x

Þk)} by a probability distribution
p(Ê(xklxÞk)lxÞk). The difference betweenrn and the result-
ing correctness we call the predicted influence (zk) of fea-
turek and is defined as

zk ; rn ¹
∑c

j ¼ 1
P(qj)

∫
Rn w k

j

p(xÞklqj) 3

∫
Sj (xÞk)

p(Ê(xklxÞk)lxÞk) dxk dxÞk ð23Þ

The potential influence was defined to identify poor fea-
tures. However, as we have seen this measure overestimates
the marginal contribution of featurek, because both the
extent of Sj(x

Þk) (when Sj(x
Þk) Þ R) and the probability

of observing values ofxk in Sj(x
Þk) are not taken into

account: the more values observed in Sj(x
Þk) the less the

feature can influence the classification result. For a poor
feature, moreover, one may expect that the difference
between the marginal distribution p(xk) and the conditional
distribution p(xklxÞk,q j) will be relatively small. If we
therefore replace p(xklxÞk,q j) by p(xk) in Eq. (8), we obtain
again an estimate of the influence of the feature. The differ-
ence in correctness betweenrn and the resulting correctness
we call the expected influence (%k) of featurek

%k ; rn ¹
∑c

j ¼ 1
P(qj)

∫
Rn w k

j

p(xÞklqj)
∫

Sj (xÞk)

p(xk) dxk dxÞk

(24)

Although (rn ¹ fk), (rn ¹ ik), (rn ¹ zk), (rn ¹ %k) [ (0,rn),
in practice one would never use a statistical classifier with a
correctness smaller than∑c

j ¼ 1
P(qj)
ÿ �2 (25)

which is the correctness of a classifier that assigns the class
labels at random, taking the prior distribution into account.

4. Four feature metrics

In practice, we estimatefk, ik, zk and%k from a set of cases.
For each case, the range Sj(x

Þk) is obtained from a trained
MLP. In Appendix A and Appendix B it is shown how this
range can be found using a Taylor expansion. The numerical

2 Note that a high replaceability is associated with a small value ofi k and
vice versa.
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precision of the polynomial approximation is determined by
the parameter«max which is derived in Appendix B.

4.1. Definition of an MLP

Let X ¼ (x1, x2,…, xr ) denote a data matrix. A vectorxi ,
which belongs to one ofc classes, represents then feature
values of casei. Let ak andbk denote the lower and upper
limits of featurek, respectively.ak and bk should be the
minimum and maximum values that can possibly be
observed for featurek.

Define a feed-forward MLP with one hidden layer withh
hidden nodes as a mapping N:{[a1,b1],...,[an,bn]} → [g,h] c:

o¼ N(x) ¼ f (W2f (W1x ¹ q1) ¹ q2) (26)

where W1 is the weight matrix that connects then input
nodes with theh hidden nodes and W2 the weight matrix
connecting theh hidden with thec output nodes.q1 andq2

are the bias vectors of the hidden and output nodes, respec-
tively. The function f:Rdim(a) → [g,h] dim(a) is the nonlinear,
bounded activation function applied to each element in the
activation vectora, g andh its lower an upper bound. Each
element in the vectoro represents the activation of a node in
the output layer.

For MLPs that are used for classification tasks, each out-
put node generally represents a class. Let the function
class(o) denote the winner takes all rule which returns the
index of the maximal element in the vectoro or B if two or
more elements have the maximal value.

Define the matrix E¼ (e1,e2,…,er), dim(ei) ¼ c, which
specifies the correct class labels of the corresponding
vectors in X. Whenx i belongs to classj, ej,i ¼ 1 andel,i ¼

0, ;l Þ j. The row vectorx 〈k〉 ¼ [xk, i ]r
i ¼ 1 contains the obser-

vations of featurek for all r cases.

4.2. Metrics

We first define a function change(x,e,k) which for a given
xÞk returns the set of values ofy ¼ xk that placex on the
verge of misclassification withe indicating the correct class.
Note that change (•) returns the empty setB when;y [
[ak,bk]: the casex always obtains the same class label or
always an incorrect class label.

The potential influence of featurek is estimated from

f̂k ¼ r̂n

¹
∑r

i ¼ 1

cor(xi ,ei) 3 (1¹ min card(change(xi ,ei ,k)), 1
� 	

)
r

ð27Þ

which may be simplified to

f̂k ¼
∑r

i ¼ 1

cor(xi ,ei) 3 min card(change(xi ,ei ,k)), 1
� 	

r
(28)

the fraction of correctly classified cases for which featurek
can influence the classification. The function card(S) returns

the number of elements in the set S. The function cor(x,e) ¼

g{class(N(x)) ¼ class(e)} is 1 when the vectorx is classified
correctly, otherwise 0.̂rn is the estimated correctness using
all n features. The metriĉfk estimatesfk using the MLP
N(x).

Let us define the function z(x,e,k) that returns the set of
intervals S that together contain all values ofxk [ [ak,bk]
which for givenxÞk result in vectorx being classified cor-
rectly. The ordered set S¼ { s(1),s(2),…, s(t)}, s(d) ¼ [ld,
ud], is an estimate of the range Sj(x

Þk) defined in Eq. (5).
The replaceability of a feature is estimated by determin-

ing the decrease in correctness when featurek is substituted
by its conditional mean. To estimate the replaceability of a
feature, rowk in X, x 〈k〉, is substituted with the valueŝx〈k〉

predicted by multiple linear regression and the modified
cases X9 are then classified with N.

Write the matrix X¼ [X 〈k: x〈k〉:X 〉k] T where X〈k denotes
the submatrix composed of the (row) vectorsx 〈1〉,…, x 〈k¹1〉

and Xk〉 denotes the submatrix composed of the vectors
x〈kþ 1〉,…, x 〈n〉. Define the matrix Gk ¼ [X 〈k:uT:X 〉k] T,
dim(Gk) ¼ n 3 r, dim(u) ¼ r, ui ¼ 1, i ¼ 1,…,r. The pre-
dicted valuex̂〈k〉 is computed aŝx〈k〉 ¼ bk TGk with bk the
least mean square (LMS) regression parameters estimated
from the equationbk T ¼ x〈k〉Gk

T(GkG
T
k )¹1, dim(bk) ¼ n and

the elementbk
k the constant term. Using the function

Np(x,k,y) ¼ N((x1,x2, …,xk¹ 1, y, xkþ 1, …,xn)T) (29)

the replaceabilityik of featurek is estimated from

îk ¼ r̂n ¹
∑r

i ¼ 1

g class(Np(xi ,k,bk Tgk
i )) ¼ class(ei)

� 	
r

(30)

îk is the change in classifier correctness when featurek is
replaced by its predicted valuêx〈k〉.

The parameters of the regressionbk used to compute the
replaceabilitŷik have a stochastic component. For normally
distributed features p(x), the predicted values estimated
from x̂〈k〉 ¼ bk Tgk

i are t-distributed around their true mean
x̃〈k〉 ¼ bk Tgk

i with the varianceV̂ ¼ ĵ2
res,k gk(Gk GT

k )¹ 1gk T

(Montgomery et al., 1992).̂j2
res,k is the residual variance

of the regression estimated from

ĵ2
res,k ¼

k x̂〈k〉 ¹ x〈k〉k2

r ¹ n
(31)

andk•k the Euclidian vector norm.
The probability of observinĝxk, i in the range S can be

estimated as

pc(S, x̂k, r ¹ n) ¼
∑

s(d)[S
F

ud ¹ x̂k

V̂
, r ¹ n

� �

¹ F
ld ¹ x̂k

V̂
, r ¹ n

� �
ð32Þ

with F the cumulative t-distribution (Parzen, 1960) with
r ¹ n degrees of freedom.
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The predicted influencêzk of featurek can now be esti-
mated from

ẑk ¼ r̂n ¹
∑r

i ¼ 1

pc(z(xi ,ei , k), bk Tgk
i , r ¹ n)

r
(33)

ẑk is the change in classifier correctness when featurek is
replaced by its predicted valuêx〈k〉 taking the stochastics of
the estimated regression vectorbk into account. This metric
is an unbiased estimator ofzk when then features are multi-
variate normally distributed, an assumption that also holds
for îk. In practical situations this is hardly ever the case and
the practical value of the metrics has to be established
empirically.

The metric for the expected influence%k is computed
from

%̂k ¼ r̂n ¹
∑r

i ¼ 1

prk(z(xi , ei ,k))
r

(34)

The function prk(S) returns the probability that featurek is
observed in one of the intervals in S

prk(S) ¼
∑

s(d)[S

∫ud

ld

p(xk)dx (35)

with p(xk) the marginal PDF of featurek estimated from X.
%̂k is an estimate of the change in classifier correctness%k

when featurek is replaced by a value from the marginal
distribution p(xk).

4.3. Properties of the feature metrics

Two of the metrics,̂ik andẑk, are based on the assumption
that the features are normally distributed. Often this is not
the case, so we briefly investigate the relation between these
two metrics and the (nonparametric) metricf̂k.

Theorem 4.3.1: For an MLP, N, the potential influence is
greater than or equal to the replaceabilitŷfk $ îk.

Proof: The inequalityf̂k $ îk may be written as

r̂¹
∑r

i ¼ 1

cor(xi , ei) 3 (1¹ min{card(change(xi ,ei , k)), 1})
r

$ r̂¹
∑r

i ¼ 1

g{class(Np(xi , k,bk Tgk
i )) ¼ class(Np(ei))}

r

ð36Þ

It can be proved that for casei

cor(xi ,ei) 3 (1¹ min{card(change(xi ,ei ,k)),1})
r

#
g{class(Np(xi ,k,bk Tgk

i )) ¼ class(Np(ei))}
r

ð37Þ

as the left-hand side in the inequality is 1 if and only if the
casex i is classified correctly and featurek has no influence
on its classification. Consequently, featurexk,i can be
replaced by any valuêxk, i [ [ak,bk]. In this case the
right-hand side is also 1. This second fraction can also be
1 when the left-hand side is 0. This happens when Sj(x

Þk) Þ
R andxk,i [ Sj (Sj Þ B). Hence∑r

i ¼ 1

cor(xi , ei) 3 (1¹ min{card(change(xi ,ei ,k)), 1})
r

#
∑r

i ¼ 1

g{class(Np(xi ,k,bk Tgk
i )) ¼ class(Np(ei))}

r
ð38Þ

andf̂k $ îk

Theorem 4.3.2: For an MLP, N, the potential influence is
greater than or equal to the predicted influencef̂k $ ẑk

whenak ¼ ¹ ` andbk ¼ `.

Proof: This proof follows the same line as the proof of
Theorem 4.3.1. For each case holds

cor(xi , ei) 3 (1¹ min{card(change(xi ,ei , k)), 1})
r

#
pc(z(xi ,ei , k), bk Tgk

i , r ¹ n)
r

ð39Þ

whenak ¼ ¹ ` andbk ¼ `. The assumption ensures that
the right-hand side is 1 when the casex i is classified cor-
rectly and featurek has no influence on its classification.
Hencef̂k $ ẑk

5. Feature pruning

Each of the four feature metrics defined in the previous
section estimates a bound for the marginal contribution of a
feature. The feature metrics can be used as criteria to select
features to be pruned from an MLP.

We developed a technique for pruning an input node from
a trained MLP that in many situations makes retraining
superfluous. Let us define LMS pruning:

Definition 5.1: Least mean square (LMS) pruning of a fea-
ture k from an MLP N consists of creating an MLP N9
identical to N but without input node k. The weights of N9
that connect the n¹ 1 input nodes with the h hidden nodes
as well as their bias terms acquire values such that N9
classifies a set of cases identically as N does when feature
k is replaced bŷx〈k〉, its LMS-predicted value.

LMS-pruning is obtained as follows. Assume for simpli-
city that inputn is to be pruned from N. Definea as the input
vector to the hidden nodes before the activation function f(•)
is applied, see Eq. (26):

a¼ W1x ¹ q1 (40)
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From the sample X, compute the regression parameter
vectorbn and split it into the coefficient vectorbnc and the
constant termbn

n, bn ¼ (bnc T,bn
n)T. We replacexn in Eq. (40)

by its predicted valuêxn, i (for casei) computed from

x̂n, i ¼ bn
n þ

∑n¹ 1

j ¼ 1
bnc

j xj, i (41)

Combining Eqs. (40) and (41) gives for hidden nodeu

au ¼
∑n¹ 1

j ¼ 1
w1

u, j xj, i ¹ q1
u þ w1

u,n bn
n þ

∑n¹ 1

j ¼ 1
bnc

j xj, i

 !
(42)

which simplifies to

au ¼
∑n¹ 1

j ¼ 1
(w1

u, j þ w1
u, nbnc

j )xj, i ¹ (q1
u ¹ w1

u,nbn
n) (43)

Define y1
u, j ¼ (w1

u, j þ w1
u,nbnc

j ), v1
u ¼ q1

u ¹ w1
u,nbn

n and con-
struct a new MLP N9 that hasn ¹ 1 input nodes and the
same number of hidden nodes as N with the weight matrix
W2, the bias vectorq2, and the new weight matrixY1 and
bias vectorv1. Now featurex 〈n〉 has been LMS-pruned from
N.

Fig. 1 illustrates which weights are modified (dashed) and
which are pruned (dotted) when featuren is pruned.
Replacing featurek with its conditional mean enforces a
new partitioning of the class space. The boundaries
that separate the new regions are determined by the inter-
section between the conditional mean (as function of the
featuresxÞk) and the class boundaries given by Rn

j , j ¼

1,…,c.
The pruning operation turns out to be useful because the

following holds.

Corollary 5.2: A network N with a correctnessr̂n will, when
feature k is LMS-pruned, have a correctnessr9 ¼ r̂n ¹ îk.

This corollary specifies a lower bound for the correctness
of a network from which featurek has been pruned as it is
possible to retrain the LMS-pruned network using the
weights of N9 as initial weight configuration and thereby
possibly improve its correctness.

6. Experiments

We conducted a set of experiments to assess the devel-
oped metrics and the pruning method introduced in Section
5. We constructed two artificial classification problems to
investigate whether the features were ranked correctly by
each of the feature metrics. For each classification problem,
the minimum error rate is computed analytically.

6.1. First experiment

In the first problem two classes A and B were character-
ized by 6 features with the centresmA ¼ (0,0,0,0,0,0)T and
mB ¼ (1.75, 1.50, 1.25, 1.00, 0.75, 0.50)T, respectively.
Feature 1 has the largest discriminative power, feature 6
the smallest. We sampled 500 uncorrelated observations
from the normal distribution D(xlmA,I) and 500 from
D(xlmB,I) with I the identity matrix. The observations
were divided into a training set and a test set each containing
250 vectors from class A and 250 from class B.

In total 30 MLPs with 2 hidden nodes, all with different
initial weight configurations, were trained for 700 cycles
with back-propagation in offline mode. The average correct-
ness of the MLPs for the test set wasravg ¼ 0.9274
(60.0027). This correctness is very close to the Bayesian
correctness,rbayes¼ 0.9292.

We used Kendall’s measure Tc for the correlation
between several judges and a criterion ranking (Siegel et
al., 1988) to compare the true (criterion) ranking of the 6
features with the ranking obtained from each feature metric.
Table 1 shows the average rank order correlation Tc

between the 30 MLPs and the true ranking that follows
from the parametersmA andmB.

The first row in Table 1 shows that potential influencef̂k

is the poorest ranking criterion whereas the expected influ-
ence%̂k resulted in an optimal ranking («max ¼ 0.01). The
latter is to be expected as the features are independent
(within the two classes). The predicted influence and the
replaceability are slightly worse ranking criteria. An analy-
sis of the weights of the MLPs indicated that feature 6 was
given a larger weight than feature 5 in most of the 30 MLPs.

Fig. 1. Weights on the dotted connections are removed by LMS-pruning.
The dashed weights are modified.

Table 1
The rank correlations Tc between the feature raking of the 30 MLPs and the true ranking. These are computed for two numerical precision levels«max of the
polynomial approximation

Tc (pot. infl.) Tc (exp. infl.) Tc (pred. infl.) Tc (repl.)

«max ¼ 0.01 0.813 1.000 0.884 0.920
«max ¼ 0.0001 0.778 1.000 0.924
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6.2. Second experiment

In the second experiment, we investigated the influence
of the numerical precision«max on the feature metrics. We
recomputed all feature metrics except the replaceabilityik

(becauseik does not depend on«max) using the 30 MLPs
from the first experiment with a higher precision level for
the polynomial approximation,«max ¼ 0.0001. The second
row in Table 1 shows the coefficient of agreement Tc

between the true raking and the average ranking assigned
by each metric to the features in the 30 MLPs with the
increased precision level. The agreement between the pre-
dicted influence and the true rank slightly improves.

The feature metric that was influenced most by the level of
precision is the potential influence. Fig. 2 shows the relative
discrepancies between the potential influence computed for
the six features, for both prediction levels of the polynomial
approximation,«max ¼ 0.01 and«max ¼ 0.0001,[f̂k(«max¼

0:01) ¹ f̂k(«max¼ 0:0001)]=f̂k(«max¼ 0:01). Table 2 shows
the potential influence of the six features.

The discrepancies betweenf̂k(«max¼ 0:01) and
f̂k(«max¼ 0:0001) become small when the features are
unimportant. This is also to be expected. For unimportant
features, small fluctuations of the polynomial approxima-
tion around the true difference in outputoj ¹ ol are unlikely
to lead to false zero crossings, becauseoj ¹ ol is in more

cases unequal to zero when featurexk is varied within its
range.

We investigated the correlation between some of the fea-
ture metrics. The correlations in Table 3 indicate that the
replaceability and the predicted influence metrics are clo-
sely related, which is also to be expected from their defini-
tion. Also the expected and the predicted influence are
correlated. The potential influence is almost independent
of the two other influence metrics.

6.3. Third experiment

A third experiment was designed to investigate how
effective LMS-pruning is and to compare the ranking of
each metric with the true ranking when the features contain
dependencies. We designed a classification problem with
three classes A, B and C that are characterized by six fea-
tures. The centra of A and B were identical to the previous
experiments andmC ¼ ¹ mB. The three classes have iden-
tical covariance matricesSA ¼ SB ¼ SC, see Table 4.

We sampled 500 vectors from D(xlmA,S), 500 from D(xl
mB,S) and 500 from D(xlmC,S). These were divided into a

Fig. 2. Average relative difference between the potential influence as computed with the precision levels«max ¼ 0.01 and«max ¼ 0.0001.

Table 2
Potential influence computed for the two different levels of precision for
each of the six features

Precision 1 2 3 4 5 6

0.01 0.865 0.795 0.799 0.519 0.117 0.135
0.0001 0.727 0.647 0.663 0.462 0.111 0.134

Table 3
Correlations between the four feature metrics computed among the 30
MLPs with the precision level used in the second experiment

Feature Pot. vs. exp.
influence

Exp. vs. pred.
infl.

Pred. infl. vs.
repl.

Pot. vs. pred.
infl.

1 0.000 0.117 0.247 0.006
2 0.280 0.295 0.515 0.123
3 0.003 0.565 0.295 0.004
4 0.380 0.945 0.966 0.364
5 0.045 0.806 0.919 0.000
6 0.001 0.301 0.640 0.102
Avg. 0.118 0.505 0.597 0.100
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training and a test set each consisting of 750 vectors. Thirty
MLPs with 2 hidden nodes, all with different initial weight
configurations, were trained for 2000 cycles.

Whereas the correctness of the Bayesian classifier is
0.9124, the correctness of each MLP on the test set was
0.9093. That all 30 MLPs have the same correctness is
due to the fact that these networks have exactly the number
of degrees of freedom required for this classification task. In
the previous experiment, the networks had also two hidden
nodes although only one was necessary for that dichoto-
mous classification task.

Table 5 contains the marginal contribution of each feature
for a Bayesian classifier and the true ranking of the features.
The feature with the smallest marginal contribution is the
correct one to prune.

The four feature metrics were used to estimate the impor-
tance of each feature among the 30 MLPs using the set of
training vectors. The most replaceable feature (smallestik)
was LMS-pruned and the importance of the five remaining
features was estimated among the 30 LMS-pruned MLPs.
This procedure was continued until only the two features 2
and 5 remained. The pruned MLPs were not retrained.
Again, we used Kendall’s measure Tc to compare the true
rank of the features with the ranking obtained by each
feature metric. The correlation coefficients are shown in
Table 6. The correlation is not always 1 between the true
and the observed feature ranking. When the metric ranked
the least important feature correctly, this is indicated with
‘‘#’’. The symbol ‘‘*’’ indicates that some of the features
obtain the same ranking (ties).

Table 6 indicates that the metrics for the predicted influ-
ence and the replaceability are superior to the other two
metrics. Another observation is that the potential influence

produces ties when the number of features is below 6. So
when the classification relies on a few features, their contri-
bution can only be assessed by taking the probability density
function of the features into account. The expected influence
only resulted in a good ranking when the number of features
was reduced to 3. We conclude that in this experiment where
the features contain dependencies, the predicted influence
and replaceability are the best ranking criteria.

Fig. 3 shows the decrease in the average correctness
among the 30 MLPs when features are LMS-pruned. The
correctness is estimated with a test set that also contains 750
cases. For this classification problem, the pruning method is
effective as the difference between the observed and theo-
retical correctness remains small, even when the pruned
MLPs were not retrained.

7. Discussion

Four measures were defined to assess the importance of a
feature for a classifier. The measures were made operational
by metrics. One could ask whether all four are needed to assess
the importance of features. In our experiments, the replace-
ability and the predicted influence are the best ranking criteria
when the features contain dependencies and the expected
influence the best criterion when the features are uncorrelated.

The potential influence metric can aid the construction of
classifiers for sequential classification tasks. Quinlan distin-
guishes between sequential and parallel classification tasks
(Quinlan, 1993). In parallel classification tasks all features
are relevant for the classification of each case. In sequential
classification tasks only a few of the available features
determine the class label for a specific case. Whether a
feature is relevant when classifying a specific case, depends
on the value of one (or more) of the other features. When an
MLP has been trained for a classification task, the potential
influence metric can be used to identify features that are
only (potentially) relevant for a small subset of cases. The
least important of then features can then be LMS-pruned.
The procedure can be repeated forn ¹ 2 features, etc.
Thereby, the potential influence metric helps to establish
the order in which features can be used by a sequential

Table 4
The covariance matrix used in the third experiment

1.0 0.4 0.0 0.0 0.0 0.0
1.0 0.0 0.0 ¹0.3 0.0

1.0 0.3 0.0 0.0
1.0 ¹0.4 0.7

1.0 0.0
1.0

Table 5
The true marginal contributions and feature rankings for a Bayesian classifier after successively removing the least contributing feature

Feature: 1 2 3 4 5 6

M. contribution 0.0125 0.0426 0.0011 0.0398 0.0643 0.0137
Ranking 5 2 6 3 1 4
M. contribution 0.0123 0.0473 0.0785 0.0910 0.0227
Ranking 5 3 2 1 4
M. contribution 0.1371 0.1073 0.1401 0.0302
Ranking 2 3 1 4
M. contribution 0.1504 0.0872 0.1137
Ranking 1 3 2
M. contribution 0.2534 0.0838
Ranking 1 2
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classifier, e.g. a cascade of MLPs. Building such a cascaded
MLP classifier is, however, not trivial as the networks that
are based on only a subset of features should be able to leave
cases unclassified that can only be classified correctly using
additional features.

The estimates computed with the four metrics all have a
certain variance. In some cases, one might want to test
whether the difference between two features with respect
to a measure is significant or not. Consequently, one needs
to know the underlying distribution of each estimate. We
leave this issue for further research.

The major advantage of LMS-pruning is that one can
prune a feature from a good MLP without having to train
its weights from scratch. The amount of computation
needed by a backward search is reduced as one does not
need to train a set of networks with different initial weight
configurations for each combination ofn ¹ 1 features.
When a good subset of features has been identified, one
can always try to retrain the MLP and possibly improve
its performance. Our approach does not take into account
that the number of hidden nodes that is optimal when using
n features may not be optimal forn ¹ 1 features. How to
prune hidden nodes is left as a topic for further research.

The overall correctness of a classifier is one of many
possible yardsticks that can be used to measure the
importance of a feature. If one wants an assessment that is
independent of the prior probability of each class, the class-
conditional correctness can be used as criterion (Egmont-
Petersen et al., 1994). Class-conditional variants of our
feature metrics can be easily computed by summing only
over cases that belong to a given class.

We developed a numerical approach based on Taylor
expansions to solve thec ¹ 1 equations that determine the
values of each feature for which two outputs of the MLP are
equal. The polynomial approach solves the equations with
sufficient accuracy but is computationally heavy as a differ-
ent set of polynomial coefficients has to be computed for
each featurek in each feature vectorx i. Laguerre’s method,
which is used to find all roots in each polynomial, is also
computationally complex. For one MLP with six input
nodes, two hidden and three output nodes, the computation
time for 750 vectors was 18 minutes on a Pentium-133 PC.

8. Conclusion

We defined a framework in which four measures for the
importance of a feature for a classifier are developed. These
measures are related to the marginal contribution of a
feature. For each measure, we defined a metric to assess
the importance of features for an MLP. It was suggested
to use the metrics as ranking criteria to identify which fea-
tures to prune from a trained MLP. When one wants to prune
features according to a backward search scheme, we suggest
the use of the replaceability as a raking criterion. This
metric gives directly the correctness of the LMS-pruned
MLP and the Taylor expansion is not needed to compute it.

Experiments illustrated that using LMS-pruning in com-
bination with a backward search strategy enabled us to

Fig. 3. Average decrease in correctness among the 30 MLPs lies close to the Bayes optimal correctness.

Table 6
Correlation between the true ranking and the ranking obtained by each of
the four feature metrics as a function of the number of input nodes of the
MLPs

Features
contained

6 5 4 3 2

Tc (pot. infl.) 0.867 # 0.738 * 0.707 *# 0.817 *# 0.000 *
Tc (exp. infl.) 0.733 # 0.600 0.000 # 1.000 # 1.000 #
Tc (pred. infl.) 0.867 # 1.000 # 1.000 # 1.000 # 1.000 #
Tc (repl.) 0.867 # 1.000 # 1.000 # 1.000 # 1.000 #

# Indicates that the least important feature was always correctly assessed.
* Indicates ties.
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prune features from an MLP in an efficient way. The error
rate obtained after a feature was LMS-pruned deviated only
slightly from the Bayesian error rate. So in our experiments
retraining the pruned networks from scratch could be
avoided. We conclude that LMS-pruning is a convenient
and computationally simple procedure to remove input
nodes from an MLP.
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Appendix A

In Section 4 we defined the function change(•). For a
specific vectorx, this function returns values of featurek
for which more than one element of the outputo ¼ N(x) of
the MLP N has the maximum value. To evaluate the func-
tion change(•), we need to identify the values of featurek in
[ak,bk] that cause two output nodes to be maximal including
the node that represents the correct class of the case. Given
the vectorx, all values exceptxk are kept fixed which allows
us to writeoj ¹ ol as a function ofxk. The roots of this
equation comprise the values of featurek we seek. As all
nodes different toj can be maximal, in totalc ¹ 1 equations
need to be solvedoj ¹ ol ¼ 0, ;l Þ j. The subset of roots
occurring in the interval [ak,bk] for which oj ¼ max(o), j ¼

class(e), ;l Þ j, constitutes the set of values to be returned
by change(•).

As the output valueoj is computed from

oj ¼ f w〈 j 〉2f (W1x ¹ q1) ¹ q2
j

� �
(A.1)

the c ¹ 1 equations can be written as

f w〈 j 〉2f (W1x ¹ q1) ¹ q2
j

� �
¹ f w〈l 〉2f (W1x ¹ q1) ¹ q2

l

� �
¼ 0

(A.2)

for l Þ j. Solutions to these equations are called zero cross-
ings. As f(•) is a monotonous transformation and f(0)¼ 0,
simplifies to

w〈 j 〉2 ¹ w〈l 〉2
� �

f (W1x ¹ q1) ¹ (q2
j ¹ q2

l ) ¼ 0 (A.3)

Now, the expression W1x ¹ q1 can for hidden nodeu be
written as

w1
u,kxk þ vk

u (A.4)

with

vk
u ¼

∑
iÞk

w1
u, ixi ¹ q1

u (A.5)

Substituting Eq. (A.4) in Eq. (A.3) gives

w〈j〉2 ¹ w〈l〉2
� �

f (w1
kxk þ vk) ¹ (q2

j ¹ q2
l ) ¼ 0 (A.6)

or written as summation over theh hidden nodes∑h

u¼ 1
w2

j,u ¹ w2
l,u

ÿ �
f (w1

u,kxk þ vk
u) ¹ (q2

j ¹ q2
l ) ¼ 0 (A.7)

These equations cannot be solved analytically due to the
nonlinear function f(•).

We use a polynomial approximation to the nonlinear
function specified as f(xk) ¼ tanh(w1

u,kxk þ vk
u). Its Taylor

expansion is given by

Pu(xk) ¼
∑̀
n¼ 0

(xk ¹ x0k)n

n!
f (n)(x0k) (A.8)

We incorporate the constantx0k into the coefficients of the
polynomial using the binomial theorem

(a¹ b)n ¼
∑n

t ¼ 0

n

t

 !
at( ¹ b)n¹ t (A.9)

The tth coefficient (coefficient of (xk)
t) of the polynomial

Pu(xk) becomes

wu, t ¼
∑̀
n¼ t

n

t

 !
( ¹ x0k)

n¹ t

n!
f (n)(x0k) (A.10)

The coefficients of the polynomial expansions are summed
over the hidden nodes to obtain one polynomial that
approximates thec ¹ 1 equationsoj ¹ ol ¼ 0, l Þ k∑̀
t ¼ 0

∑h

u¼ 1
(w2

j, u ¹ w2
l, u)wu, t

 !
(xk)

t ¹ (q2
j ¹ q2

l ) ¼ 0 (A.11)

In practice, the degree of the polynomial expansion has to be
limited. We have set the maximum degree to 4 and approxi-
mateoj ¹ ol with a number of concatenated polynomials.
Each polynomial approximatesoj ¹ ol with a specified
precision in a subinterval [xbeg,xend] of [ak,bk]. Together,
the polynomials provide an approximation over the whole
interval. In Appendix B it is shown how the valuesxbeg, xend

and f(n)(x0k) are computed. For a discussion of polynomial
approximation of MLPs see Williamson et al. (1995).

We use Laguerre’s method (Press et al., 1988) to find all
real and complex roots of the polynomials. We discard com-
plex roots and roots outside the interval in which each poly-
nomial provides a sufficiently accurate approximation. A
root is considered as complex when the value of its imagin-
ary component exceeds the numerical precision«max.

Appendix B

We introduce the approximation precision«max . 0. The
function f(w1

u,kxk þ vk
u) for hidden nodeu is approximated
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with a series of Taylor polynomials, each with a different
value of x0. These values ofx0 are chosen such that the
approximation interval [xbeg,xend] of the respective poly-
nomials together span the interval [ak,bk], see Fig. 4.

We use Lagrange’s remainder formula to determine the
approximation interval of each polynomial [xbeg,xend] with
x0 [ [xbeg,xend] for a given maximal approximative error
«max (Ralston, 1965; Sydsæter, 1993):

«max #
lx¹ x0l

nþ 1

(nþ 1)!
M (B.1)

where M is the maximum absolute value of f(nþ1)(x), the
(n þ 1)th derivative of f(x), ;x [ m (for simplicity m ¼

R). For a fixedxbeg(¼ak for the first polynomial), when«max

is specified, we may determinex0 andxendof the polynomial
that guarantees an error smaller than«max by rearranging
Eq. (B.1). Now solving forx0 gives

«max(nþ 1)!
M

� �(nþ 1)¹ 1

$ lx¹ x0l (B.2)

xbeg¹
«max(nþ 1)!

M

� �(nþ 1)¹ 1

¼ x0 (B.3)

and forxend

x0 þ
«max(nþ 1)!

M

� �(nþ 1)¹ 1

¼ xend (B.4)

The extreme valueM can be found by solving f(nþ2)(x) ¼ 0
and choosing the root that maximizeslf (nþ1)(x)l. The nth
derivative f(n)(x) is defined as

f (n)(x0) ¼
dn

dxntanh(x0) (B.5)

with x0 a value in the domain of tanh(x).
We limit the number of the coefficients in a polynomial to

5. This allows us to use the roots of f(6)(x) ¼ 0 to determine
the begin and end points of a polynomialPu(xk) with the
degree 4. The fifth and sixth derivatives of the function

f(x) ¼ tanh(wx þ v) with respect tox are

f (5)(x) ¼ 8w5 2 cosh(wxþ v)4 ¹ 15 cosh(wxþ v)2 þ 15
cosh(wxþ v)6

(B.6)

f (6)(x) ¼ ¹ 16w6 sinh(wxþ v)

3
2 cosh(wxþ v)4 ¹ 30 cosh(wxþ v)2 þ 45

cosh(wxþ v)7 ðB:7Þ

The roots f(6)(x) ¼ 0 are

¹
v
w

(B.8)
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and

6
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þ
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�����
15

pr !
¹ v
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(B.10)

For each hidden node, the originx0k of the first polynomial
is computed from Eq. (B.3) where the begin pointxbeg1 ¼ ak,
the smallest value featurek can possibly take. Thenxend1 is
computed from Eq. (B.4). The pointxbeg2 of the second
polynomial is set equal toxend1. This procedure is continued
until xend of a polynomial exceeds the limitbk.

For an MLP with a number of hidden nodes, the poly-
nomials specified in Eq. (A.11) have to be added taking into
account the approximation interval of each polynomial. So,
for example, for an MLP with 2 hidden nodes, the poly-
nomial P1,1 approximates hidden node 1 in the
interval [xbeg1,1,xend1,1] andP2,1 hidden node 2 in the interval
[xbeg2,1,xend2,1], see Fig. 4. Now, we construct a polynomial
that approximatesoj ¹ ol by adding the coefficients of the
two polynomialsP1,1 andP2,1 of which the approximation
intervals [xbeg1,1,xend1,1] and [xbeg2;1,xend2,1] overlap.
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